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ABSTRACT

In this work we consider the Bayesian Integrate And Shift
(BIAS) model for learning object categories and test its per-
formance on learning and recognizing different object cate-
gories from real-world images. In contrast to conventional
learning algorithms that require hundreds or thousands of
training examples, we show that our system can learn a
new object category from only a few examples. In addition,
our system provides information not only about the object
category but also about the local regions within the object
on which it is fixating. We tested the performance of the
system on very challenging examples of partially occluded
targets. The training was done on different instances of one
category and tested on partially occluded examples that the
system had never seen before. We demonstrate that the sys-
tem is very robust to partial occlusions and clutter and can
recognize a target even if it fixates on the occluded part.

1. INTRODUCTION

Detection and identification of partially occluded targets
in complex scenes becomes an increasingly important task
in light of the latest developments in urban warfare. The
construction of a system that can automatically identify se-
lected targets or direct soldiers attention to the locations
that may contain suspicious activity can be of great use not
only as a tool that can reduce the cognitive workload of the
soldier but also as a tool that can alert the soldier to possible
threats.

Identifying a target in a complex scene is a challenging
problem that incorporates several important aspects of vi-
sion including: translation and scale invariant recognition,
robustness to noise and ability to cope with significant vari-
ations in lighting conditions. Identifying an occluded target
adds another layer of complexity and this problem can be
extremely difficult even for humans. Motion information
can be of great help in providing an initial figure-ground
segmentation. However, in many situations motion infor-
mation is not available. In addition, if the input to the sys-
tem is a video stream then the requirement that the system
works in real-time often precludes the use of more sophis-

ticated but computationally involved techniques.
One of the main limitations of classical vision algo-

rithms, such as those utilizing Artificial Neural Networks
(ANNs), Radial Basis Functions (RBFs), and Support Vec-
tor Machines (SVMs), is that they require a fixed size in-
put. This means that during the recognition phase the input
vector to the system has to be of the same size as the in-
put vector used during the training process. Such systems
are therefore not well suited for occlusion problems where
sections of the input vector are simply missing or carry in-
correct information.

In addition, supplying a fixed size input to the recog-
nition system requires the selection of the specific region
from the image. This means that such systems have to
solve the segmentation problem, find the boundary of the
region occupied by the target. However, given an image,
it is not known where the target is or what its size is. In
order to detect a target, regardless of its location, the detec-
tion system is usually (as presented in Schneiderman and
Kanade (2000) convolved over the whole image and in or-
der to detect a target at different scales the original image
is rescaled and the convolution procedure repeated. Since
the methods that rely on exhaustive search are not compu-
tationally efficient, they are mostly applied to detection of
targets in static images.

Human visual system, on the other hand, does not re-
quire any “presegmentation” of the image in order to rec-
ognize a specific object. In fact, when we look at an object,
our visual system processes not only information coming
from the object itself but the whole scene. This is accom-
plished through an array of neurons that are selective to
specific features and whose receptive fields (RFs) are spa-
tially distributed and localized. Although our visual system
processes information from all the regions of the scene, it
appears as if it somehow knows to “discard” certain regions
(the background) and integrate only information from the
object regions. If we are not able to recognize an object
from a single fixation, then we make saccades, combine
evidence from different fixations and as a result usually im-
prove our perception of the object.

Since our visual system integrates information from neu-
rons that have localized receptive fields, it seems natural to
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represent an object as a collection of localized features. In
contrast toglobal models, such as those that use a Principal
Components Analysis (PCA) approach, feature-based ap-
proaches are much more robust to partial occlusions. Over
the past years, feature-based approaches had become in-
creasingly popular within the computer vision community
Lowe (1999); Schmid and Mohr (1997); Serre et al. (2005);
Heisele et al. (2001); Torralba et al. (2004). These ap-
proaches have been succesfully used in various applica-
tions such as face recognition Schneiderman and Kanade
(2000); Viola and Jones (2001), handwriting recognition
Wang et al. (2005); Neskovic et al. (2000), car detection
Agarwal et al. (2004); Schneiderman and Kanade (2000);
Neskovic et al. (2004), and modeling human bodies Felzen-
szwalb and Huttenlocher (2005). One of the problems of
probabilistic feature based approaches (such as Fei-Fei et al.
(2003)) is that they can not model an object with a large
number of features since calculating the joint probabilities
would require an enormous amount of training data. An-
other problem is how to find the best constellation of fea-
tures. In one-dimensional case this problem can be solved
using a dynamic programming approach but for two dimen-
sional case this is still an open problem and no exact solu-
tion that is at the same time computationally efficient exists
today. In contrast to approaches presented in Fei-Fei et al.
(2003); Serre et al. (2005), our model uses much simpler
features and does not require a feature learning stage. Fur-
thermore, unlike the model of Fei-Feiet al., our system
can use an arbitrarily large number of features without an
increase in computational complexity.

The main question therefore is how to deal with com-
putational complexity when analyzing large amounts of in-
formation contained in visual scenes. It seems natural, that
in designing a system for scene analysis we should use
some properties of the best existing system for analyzing
visual scenes - the human visual system. Unfortunately, bi-
ologically inspired models Keller et al. (1999); Rybak et al.
(1998) and models of biological vision Amit and Mascaro
(2003); Mel (1997); Riesenhuber and Poggio (1999) have
been much less successful (in terms of real-world applica-
tions) compared to computer vision approaches. A model
that captures some properties of human saccadic behavior
and represents an object as a fixed sequence of fixations has
been proposed by Kelleret al. Keller et al. (1999). Simi-
larly, Hecht-Nielsen and Zhou Hecht-Nielsen. and Zhou
(1995) and Rybaket al. Rybak et al. (1998) presented mod-
els that are inspired by the scanpath theory Noton and Stark
(1971). Although these models utilize many behavioral,
psychological and anatomical concepts such as separate
processing and representation of “what” (object features)
and “where” (spatial features: elementary eye movements)
information, they still assume that an object is represented
as a sequence of eye movements. In contrast to these ap-
proaches, our model does not assume any specific sequence
of saccades and therefore is more general.

In this work we consider the Bayesian Integrate And
Shift (BIAS) Neskovic et al. (2006) model for learning
object categories and test its performance on learning and
recognizing different object categories from real-world im-
ages. In contrast to conventional learning algorithms, such
as ANNs, that require hundreds or thousands of training
examples, we show that our system can learn a new object
category from only a few examples. In addition, our system
provides information not only about the object category but
also about the local regions within the object on which it is
fixating. We tested the performance of the system on very
challenging examples of partially occluded targets. The
training was done on different instances of one category
and tested on partially occluded examples that the system
had never seen before. We demonstrate that the system is
very robust to occlusions and clutter and can recognize a
target even if it fixates on the occluded part.

The paper is organized as follows. In section 2 we give
an overview of the BIAS model for learning new object cat-
egories. In section 3 we discuss implementation details. In
section 4 we illustrate the performance of the system when
tested on different object categories and several instances
of occluded faces. In section 5 we summarize the main
properties of our model and the impact of the system on
the warfighter.

2. THE MODEL

Our model falls into a category of feature-based approaches
Fei-Fei et al. (2003); Lowe (1999); Torralba et al. (2004);
Serre et al. (2005); Schneiderman and Kanade (2000); Vi-
ola and Jones (2001). The problem that we want to solve is
as follows: given a collection of features, their locations~X ,
and appearances~Awe want to calculate the probability that
they represent an object of a specific classn, P (On| ~X, ~A).
Since calculating this probability is extremely difficult if
the number of features is large, we seek to find suitable
approximations. One of the biggest simplifications is to
assume that the feature locations are fixed and that all the
variations are due to appearances. Unfortunately, this is
one of the least reasonable assumptions which holds in only
few practical situations.

In order to make the model more realistic, one should
include tolerance to variations in feature locations. Instead
of assuming that a feature is located at a point, we will as-
sume that it is located within a region. The question is how
to design these regions? If we use large regions, we can
then easily capture all possible variations in feature loca-
tions (excellent generalization) but at the expense of losing
location specificity which would decrease discrimination
capability of the model. On the other hand, very small re-
gions would provide excellent localization but would lead
to poor generalization. We propose that the solution to
this trade-off between generalization and retaining loca-
tion specificity is to use retina-like distribution of regions
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in combination with saccade-like shifts. If we want to es-
timate the location of a specific feature, then the size of
the region where it can be found (the uncertainty) depends
on the location of the point with respect to which we mea-
sure its distance - the center. The further away the feature
is from that center, the larger the uncertainty. Therefore,
in order to capture variations in feature locations, the sizes
of the regions, as well as their overlaps, have to increase
with their distance from the center. As a consequence, the
accuracy of estimating feature locations is high only for
the features that are close to the center. In order to ob-
tain good location estimates for the features that are further
away from the center, the recognition system would have
to shift the center, to make a ”saccade”.

Modeling an object. Let us now assume that we are
given a large number of regions that form a fixed grid and
completely cover an input image. Each such region we call
a receptive field (RF) and with it we associate a group of
feature detectors that signal the presence of the features to
which they are selective. This fixed mask of the RFs can
be positioned anywhere in the image and the location over
which the smallest RF is positioned is the fixation point.
We will call a configuration consisting of the outputs of
feature detectors associated with a specific fixation point a
view. Since there can be as many views as there are (fixa-
tion) points within the object, it means that that the number
of views can be extremely large even for objects of small
sizes. In order to reduce the number of views, we will as-
sume that some views are sufficiently similar to one an-
other so that they can be clustered into the same view. In
this way, an object is modeled as a collection of views and
therefore has as many labels as there are views.

Notations. With symbolH we denote a random vari-
able with valuesH = (n, i) wheren goes through all pos-
sible object classes andi goes through all possible views
within the object. Instead of(n, i), we use the symbolHn

i

to denote theith view of an object of thenth (object) class.
The background class, by definition, has only one view.
With variable~y we measure the distances of the centers of
the RFs from the fixation point. The symbolDr

k denotes
a random variable that takes values from a feature detec-
tor that is positioned within the RF centered at~yk from the
central location, and is selective to the feature of therth

(feature) class,Dr
k = dr(~yk). The symbolAt denotes the

outputs of all the feature detectors for a given fixation point
~xt at timet. With variable~z we measure the distances of
the previous fixation locations (view centers) with respect
to the location of the current fixation point. For example,
the symbolzj

t−1 denotes the location of the center of the
jth view at timet−1. The collection of the locations of all
the view centers, up to timet, we denote with the symbol
Bt.

What we want to calculate is how spatial information,
coming from different feature detectors, as well as infor-
mation from previous fixations (the centers of the previous

views) influence our hypothesis,p(Hn
i |At, Bt). In order

to gain a better insight into dependence of these influences,
we will start by including the evidence coming from one
feature detector and then increase the number of feature
detectors and fixation locations.

Combining information within a fixation. Let us now
assume that for a given fixation point~x0, the feature of the
rth class is detected with confidencedr(~yk) within the RF
centered at~yk. The influence of this information on our
hypothesis,Hn

i , can be calculated using the Bayesian rule
as

p(Hn
i |dr(~yk), ~x0) =

p(dr(~yk)|Hn
i , ~x0)p(Hn

i |~x0)
p(dr(~yk)|~x0)

, (1)

where the normalization term indicates how likely it is that
the same output of the feature detector can be obtained
(or “generated”) under any hypothesis,p(dr(~yk)|~x0) =∑

n,i p(d
r(~yk)|Hn

i , ~x0)p(Hn
i |~x0).

We will now assume that a feature detector with RF
centered around~yq and selective to the feature of thepth

class outputs the valuedp(~yq). The influence of this new
evidence on the hypothesis can be written as

p(Hn
i |dp(~yq), dr(~yk), ~x0) =

p(dp(~yq)|dr(~yk),Hn
i , ~x0)p(Hn

i |dr(~yk), ~x0)
p(dp(~yq)|dr(~yk), ~x0)

. (2)

The main question is how to calculate the likelihood term
p(dp(~yq)|dr(~yk),Hn

i , ~x0)? In principle, if the pattern does
not represent any object but just a random background im-
age the outputs of the feature detectorsdp(~yq) anddr(~yk)
are independent of each other. If, on the other hand, the
pattern represents a specific object, say an object of thenth

class, then the local regions of the pattern within the detec-
tors RFs, and therefore the features that capture the proper-
ties of those regions, are not independent from each other,
p(dp(~yq)|dr(~yk),Hn, ~x0) 6= p(dp(~yq)|Hn, ~x0). However,
once we introduce a hypothesis of a specific view, the fea-
tures become much less dependent on one another. This is
because the hypothesisHn

i is much more restrictive and at
the same time more informative than the hypothesis about
only the object class,Hn. Given the hypothesisHn, each
feature depends both on the locations of other features and
the confidences with which they are detected (outputs of
feature detectors). The hypothesisHn

i significantly reduces
the dependence on the locations of other features since it
provides information about the exact location of each fea-
turewithin the object up to the uncertainty given by the size
of the feature’s RF.

The likelihood term, under the independence assump-
tion, can therefore be written asp(dp(~yq)|dr(~yk),Hn

i , ~x0) =
p(dp(~yq)|Hn

i , ~x0). Note that this property is very important
from a computational point of view and allows for a very
fast training procedure. The dependence of the hypothesis
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on the collection of outputs of feature detectorsA0 can be
written as

p(Hn
i |, A0, ~x0) =

∏
rk∈A p(d

r(~yk)|Hn
i , ~x0)p(Hn

i |~x0)∑
n,i

∏
rk∈A p(dr(~yk)|Hn

i , ~x0)p(Hn
i |~x0)

(3)

wherer, k goes over all possible feature detector outputs
contained in the setA0 andn, i goes over all possible hy-
potheses.

Combining information across fixations. We now
calculate how the evidence about the locations of differ-
ent fixations influence the confidence about the specific hy-
pothesis,Hn

j , associated with fixation point~xt. We assume
that at timet − 1 a hypothesis has been made that the fix-
ation at distance~zi

t−1 from the current fixation represented
the center of theith view of the object of thenth class.
Similarly, we will assume that at timet − 2 a hypothesis
has been made that the fixation at distance~zk

t−2 from the
current fixation represented the center of thekth view. We
denote with the symbolAt the outputs of all the feature de-
tectors that are used to calculate the (new) hypothesisHn

j .
The influence of the evidence about the locations of the pre-
vious hypotheses on the current hypothesis can be written
as

p(Hn
j |~zk

t−1, ~z
i
t−2, At, ~xt) = (4)

p(~zk
t−1|Hn

j , ~z
i
t−2, At, ~xt)p(Hn

j |~zi
t−2, At, ~xt)

p(~zk
t−1|~zi

t−2, At, ~xt)
.

In order to make the model computationally tractable, we
will assume that the view locations are independent from
one another given the hypothesis.

Since the location of thekth view of the object does
not depend on the configuration of feature detectors that is
associated with the current view, and assuming that view
locations are independent from one another, the likelihood
term from Eq. (4) becomesp(~zk

t−1|Hn
j , ~z

i
t−2, At, ~xt) =

p(~zk
t−1|Hn

j , ~xt). The probability that the input pattern rep-
resents thejth view of the object of thenth class, given the
activations of the letter detectorsAt and locations of other
viewsBt can be written as

p(Hn
j |At, ~xt, Bt, f(s)) =

∏
s<t p(~z

f(s)
s |Hn

j , ~xt)p(Hn
j |At, ~xt)

∑
i

∏
s<t p(~z

f(s)
s |Hn

j , ~xt)p(Hn
j |At, ~xt)

(5)

wherei goes through views of thenth object,s goes through
the locations of all the fixations and the functionf(s) maps
a location~ys to a specific hypothesis. With symbolBt we
denoted the set of the locations of all the fixations (object
views) with respect to the location of the current fixation,
~xt. The second term in the numerator is calculated using
Eq. (3).

3. IMPLEMENTATION

Modeling Likelihoods. We model the likelihoods in Eq. (3)
using Gaussian distributions. The probability that the out-
put of the feature detector representing the feature of the
rth class and positioned within the RF centered at~yk has a
valuedr(~yk), given a specific hypothesis and the location
of the fixation point, is calculated as

p(dr(~yk)|Hn
i , ~xt) =

1
σr

k

√
2π
exp

−(µr
k − dr(~yk))2

2(σr
k)2

. (6)

This notation for the mean and the variance assumes
a particular hypothesis so we omitted some indices,σr

k =
σr

k(n, i). The values for the mean and variance are cal-
culated in the batch mode but, as we will see in the next
section, only a small number of instances are used for train-
ing so the memory requirement is minimal. For modeling
the location likelihoods in Eq. (5) we use the multivariate
Gaussian distributions since in this case the mean location
is a vector and similarly the variance is a covariance ma-
trix. Note also the difference in measuring the location of
the center of a specific RF,~yk, and in measuring the loca-
tion of the fixation point~zk. Although both distances are
calculated with respect to the same reference point (the fix-
ation point) the locations of the RFs form a fixed grid while
the locations of fixation points can vary continuously.
Feature Detectors and Receptive Fields.In this work we
extract features using a collection of Gabor filters where a
Gabor function that we use is described with the following
equation

ψf0,θ,σ(x, y) =
e−

1
8σ2 (4(xcosθ+ysinθ)2+(ycosθ−xsinθ)2)

√
2πσ

·

sin(2πf0(xcosθ + ysinθ)). (7)

The inspiration for selecting these features comes from the
fact that simple cells in the visual cortex can be modeled
by Gabor functions as shown by Marcelja Marcelja (1980)
and Daugman Daugman (1980).

One way to constrain the values of the free parameters
in Eq. (7) is to use information from neurophysiological
data on simple cells as suggested by Lee Lee (1996). More
specifically, the relation between the spatial frequency and
the bandwidth can be derived to be:2πfoσ = 2

√
ln2(2φ +

1)/(2φ−1) (see Lee (1996) for more detail). Since the spa-
tial frequency bandwidths of the simple and complex cells
have been found to range from 0.5 to 2.5 octaves, clus-
tering around 1.2 octaves, we setφ to 1.5 octaves. The
orientations and bandwidths of the filters are set to:θ =
{0, π/4, π/2, 3π/4} andσ = {2, 4, 6, 8}. Each RF has a
square form and the size of the smallest RF is 31x31 pixels.
The RFs are arranged along 8 directions and the sizes of the
RFs are increased at the ratio of 1.4 (controlled by the en-
large parameter). For example, the sizes of the RFs that are
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nearest neighbors to the central RF are (31x1.4)x(31x1.4).
The overlap between two neighboring receptive fields is
50% meaning that for two neighboring RFs, the larger RF
covers 50% of the area of the smaller receptive field. The
recognition results are not very sensitive to the small changes
in the overlap, enlarge parameter, and the sizes of the re-
ceptive fields.

With each RF we associate 16 feature detectors where
each feature detector signals the presence of a feature (i.e.
a Gabor filter of specific orientation and size) to which it is
selective no matter where the feature is within its receptive
field. One way to implement this functionality is to use a
max operator. The processing is done in the following way.
On each region of the image, covered by a specific RF, we
apply a collection of 16 Gabor filters (4 orientations and
4 sizes) and obtain 16 maps. Each map is then supplied
to a corresponding feature detector and the feature detector
then finds a maximum over all possible locations. As a
result, each feature detector finds the strongest feature (to
which it is selective) within its RF but does not provide any
information about the location of that feature. This makes
the number of features that our system uses over 1,000.

The Training Procedure. The training is done in a su-
pervised way. We constructed an interactive environment
that allows the user to mark a section of an object and la-
bel it as a fixation region associated with a specific view.
Therefore, every point within this region can serve as the
view center. Once the user marks a specific region, the sys-
tem samples the points within it and calculates the mean
and variance for each feature detector. Since the number
of training examples is small the training is very fast. Note
that during the training procedure the input to the system
is the whole image and the system learns to discriminate
between an object and the background. It is important to
stress that the system does not learn parts of the object, but
the whole object from the perspective of the specific fixa-
tion point.

4. RESULTS

We tested the performance of our system on four object
categories (faces, cars, airplanes and motorcycles) using
the Caltech database as in Fei-Fei et al. (2003); Serre et al.
(2005). As a performance measure we used the error rate at
equilibrium point (EP), which is calculated by setting the
threshold so that the miss rate is equal to the false posi-
tive rate. We chose this measure over the Receiver Oper-
ator Characteristic (ROC) since it provides more compact
representation of the results, in the sense that much more
information can be represented in one graph compared to
ROC measure. For illustrative purposes, we chose the face
category to present some of the properties of our system in
more detail.

The system was first trained on background images in
order to learn the “background” hypothesis. We used 20

1
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1 2
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Fig. 1. View regions as selected by the teacher.

random images and within each image the system made
fixations at 100 random locations. The system was then
trained on specific views of specific objects. For example,
in training the system to learn the face from the perspective
of the right eye, the user marks with the cursor the region
around the right eye and the system then makes fixations
within this region in order to learn it.
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Fig. 2. Performance graphs for different views of the face.
The task is to verify whether an image contains a face and
to estimate the locations of different views within the face.

During the testing phase, the system makes random fix-
ations and for each fixation point we calculated the proba-
bility that the configuration of the outputs of feature detec-
tors represents a face from the perspective of the right eye.
To make sure that there are also positive examples among
the random fixations, each testing image is divided into the
view region(s) (in this case the right eye region) and the rest
of the image represents the ”background” class. Therefore,
positive examples consisted of random fixation within the
region of the right eye and negative examples consisted of
random fixations outside the region of the right eye. The
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Table 1.
Faces - Multi Views

1 2 3 4
r. eye 98.0 % 99.0 % 99.5 % 100 %
l. eye 94.5 % 99.5 % 100 % 100 %
nose 90.5 % 94.0 % 96.5 % 97.5%
mouth 92.0 % 97.5 % 98.5 % 99.0 %

Table 2.
Cars - Multi Views

1 2 3 4
v1 88.2 % 91.1 % 94.2% 95.8 %
v2 86.6 % 91.5% 93.3 % 94.0 %
v3 88.9 % 90.4 % 93.0 % 94.9 %
v4 84.4 % 90.7 % 92.5% 93.2 %

system was tested on instances that were not used for train-
ing. We used 200 positive examples and 1000 negative ex-
amples for testing. In all of the experiments that follow, we
set the number of fixations per view (the number of sam-
pling points) to 10.
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Fig. 3. Performance graphs for three different objects us-
ing two different views. The task is to recognize a specific
object category and estimate locations of different views
withing the object.

As illustrated in Figure 2, the system can easily learn a
new view from only a few training examples. Since the sys-
tem was not able to learn much from one example, we set
the performance to zero for one training example. In order
to learn the face (and “discard” information from the back-
ground) it has to be presented with more than one train-
ing example. As it turns out, two examples are not quite
enough, as can be clearly seen in Figure 2, but with three
examples the system can learn the new face (the specific
view of the face) with high confidence.

In Figure 3 we show that the system can easily learn
classes other than faces. For each class we used two views
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Fig. 4. Top: Three different occlusions used for testing
the system on the face it has never seen before. The task
is to detect a face and estimate the location of the right
eye. Bottom: Corresponding performances under different
occlusions.

as illustrated in Figure 1. The system was tested on in-
stances it has never seen before. The task was to detect an
object within the image and estimate the locations of the
specific views.

Although the performance of the system is very good
using only a single view, we tested whether and how much
information from other fixations improves the performance,
Tables 1 and 2. The tests were done on faces and cars and
we used 4 very good views for faces and 4 below the aver-
age views for cars. In both cases the information about
the spatial location of other views improved the perfor-
mance. During the training phase, the user marks the fixa-
tion (view) regions and the system then calculates the lo-
cation likelihoods for each pair of regions separately by
randomly selectingn points from each region. During the
testing phase, in order to estimate the location of the view
center, the system selects 10 points with the highest prob-
abilities (as representing the view) and takes the average
over their locations. This location is then selected by the
system as a representing the view center.

The system was first trained on individual views and the
results are illustrated in column1 of Tables 1 and 2. When
the system used information about the location of one more
view, the performance improved, as shown in column2.
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Fig. 5. Performance of the system on different face occlu-
sions. Yellow stars denote correctly detected positive fix-
ations, green stars denote correctly detected negative fixa-
tions, red stars denote missed fixations, and blue stars de-
note false alarm fixations.

Note that this information is not provided by the teacher
but estimated by the system. This means that the recogni-
tion rates can decrease if the system erroneously estimates
the view centers. However, utilizing information about the
location of two different views always improved the per-
formance as captured by the numbers in column3. The
best performance, as expected, was obtained when the sys-
tem used the information about centers of the three views
as shown in column4.

Since our system uses information from over 1,000 fea-
ture detectors distributed over the whole image, it is very
robust to occlusions. This is demonstrated in Figure 4, bot-
tom, that illustrates the performance of the system when
tested on occluded images as shown in Figure 4, top . The
system was trained to recognize a face category from the
perspective of the right eye (righ-eye-view) using (non-

occluded) examples from different people.

The system was tested on three types of occlusions:
a) the bar covering both eyes (denoted as cover 1 in Fig-
ure 4, b) two large disconnected regions covering the face
(cover 2), and c) the rectangle covering the face below the
nose (cover 3). Tests were done on face images of peo-
ple that were not used for training. As one can see, sys-
tem can recognize the face even when the fixating region
is covered (Figure 5, top), which means that it utilizes in-
formation from the whole face and not only local infor-
mation around the fixation point. We use yellow stars to
display correctly detected positive fixations, green stars for
correctly detected negative fixations, red stars for missed
fixations, and blue stars for false alarm fixations, Figure 5.
Incorrect fixations are bigger in size.

5. CONCLUSIONS

In this work we considered the Bayesian Integrate And
Shift (BIAS) Neskovic et al. (2006) model for learning ob-
ject categories and tested its performance on learning and
recognizing different object categories from real-world im-
ages. In contrast to conventional learning algorithms, such
as ANNs, that require hundreds or thousands of training
examples, we showed that our system can learn a new ob-
ject category from only a few examples. In addition, our
system provides information not only about the object cat-
egory but also about the local regions within the object on
which it is fixating.

We tested the performance of the system on very chal-
lenging examples of partially occluded targets. The train-
ing was done on different instances of one category and
tested on partially occluded examples that the system had
never seen before. We demonstrated that the system is very
robust to partial occlusions and clutter and can recognize a
target even if it fixates on the occluded part.

The benefit of this system to the soldier will be twofold:
it will reduce the cognitive workload of the soldier oper-
ating in complex visual environments (such as those en-
countered in urban combat), and it will alert the soldier to
possible threats that might otherwise be overlooked due to
the partial occlusions. We believe that the system for auto-
matic detection of concealed and partially occluded target
will have a significant impact on the warfighter especially
in light of the latest developments in urban warfare.
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